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Departamento de Fı́sica Teórica II, Facultad de Ciencias Fı́sicas, Universidad Complutense,
28040 Madrid, Spain

E-mail: dperalta@fis.ucm.es

Received 14 January 2003, in final form 17 April 2003
Published 29 May 2003
Online at stacks.iop.org/JPhysA/36/6441

Abstract
Escape to infinity is proved for a great variety of potentials, including the
potential created by an infinite number of sources. Relativistic escape is
studied. Escape in the presence of a constant electromagnetic field and a
potential is also considered.

PACS numbers: 02.30.Hq, 45.20.Dd

1. Introduction

We deal in this paper with the problem of finding conditions guaranteeing that the Newtonian
equations of motion of a unit-charge, unit-mass particle,

ẍ = −∇V (x, t) + ε(x) + ¯̄A(x)ẋ
x ∈ Rn (n = 2, 3) x = (xi)

∇ = gradient operator


 (1)

admit unbounded solutions x(t; x0, ẋ0). That is the Euclidean norm of these solutions,

‖x(t; x0, ẋ0)‖ (2)

is unbounded when t > 0 for initial conditions (x0, ẋ0) lying on open sets � of the phase space
I of equations (1). These unbounded solutions are called in theoretical physics and chemistry
escape or scattering solutions [1].

Note that ε(x) and ¯̄A(x) (see equation (1)) stand for a global vector field and a global
antisymmetric (n, n) matrix taking into account the effect on the unit charge of a global steady
electromagnetic field. Non-global steady electric fields are assumed to be described by the
non-global potential V (x) (think of the local electric field produced by a single charge or the
Newtonian gravitational field originated in a single mass).
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The time T (T > 0) such that ‖x(t; x0, ẋ0)‖ is bounded in [0, T ) but limt→T ‖x(t; x0, ẋ0)‖ =
+∞, that is the time taken by the particle in reaching infinity, can be finite or infinite [2], but
this point will not be treated here.

An escape problem in theoretical chemistry arises when an electron in an atom at t0 = 0
goes to infinity for t > 0 and the original atom gets ‘ionized’.

When V (x) = V (‖x‖), V is called a central potential. If, moreover, ε = 0, ¯̄A = 0 the
problem of finding an open set �,� ⊂ I, such that (x0, ẋ0) ∈ � implies

‖x(t; x0, ẋ0)‖ = unbounded for t = T (3)

is trivial, since equation (1) is in this case integrable [3]. When V (x) is not central
equation (1) is, in general, not integrable (ε = 0, ¯̄A = 0) and escape to infinity must be
decided in other ways. In fact, the problem of existence of scattering solutions of equation

ẍ = −∇V (x) (4)

was studied [4] in R3 when V (x) can be expressed as a linear combination of Newton-like
potentials (V ∼ 1

ρ
, ρ = ‖x‖, when ρ → +∞). The basic idea in [4] was to associate with

equation (4) a differential inequality for ρ, ρ̇ and ρ̈.
Using basically the same idea of differential inequalities we get in this paper the following

results:

(i) Conditions guaranteeing escape to infinity when V (x, t) is a finite superposition of
Newtonian [4], Lennard-Jones [5], Morse [6], Yukawa [7], Saxon–Woods [8], Eckart [9]
and Hylleraas [10] potentials created by point sources at the positions xi(t) (i = 1, . . . , N)

satisfying

‖xi(t)‖ � M M ∈ R+ (positive real number) (5)

are obtained in section 2.
(ii) Perturbation of central potentials and escape are studied in section 3.

(iii) Relativistic escape to infinity for the cases studied in sections 2 and 3 is considered in
section 4.

(iv) Escape under the presence of a constant electromagnetic field (ε, B) and a central potential
has been considered in section 5.

The problem of escape to infinity remains open for the relativistic equations
d(γ ẋ)

dt
= −∇V (x, t) + ε + ¯̄Aẋ γ = (1 − ẋ2)−1/2 light speed = 1 (6)

for which the methods of sections 2–5 seem to fail (see section 6).
The conclusions and open problems on escape to infinity appear in section 6. The proof

of the main theorem used in this paper to ascertain escape to infinity is given in the appendix.
Escape in the presence of a potential has been studied in [11] when V (x) is non-Newtonian.
A careful mathematical study of Newtonian potentials can be found in [12].

2. Escape to infinity when V(x, t) is a linear superposition of central potentials
and ε = 0, ¯̄A = 0

We now consider the case of a potential V (x, t) of the form

V (x, t)
def=

N∑
i=1

Vi(‖x − xi(t)‖) (7)

where Vi stands for a central potential originated in the source xi(t) (i = 1, . . . , N); think of
the solar system, where xi(t) are the instantaneous positions of the Sun and the larger planets
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(N = 10) or of an electron subjected to the action of several positive charges. We can also
assume that Vi is analytic on its domain of definition.

Applications of the results in this section can be found in the comments between
formulae (16) and (17). Throughout this section we assume that equation (5) holds, that
is ‖xi(t)‖ is assumed to be bounded when t > 0, ∀i = 1, . . . , N. In addition to this the functions
Vi are assumed to satisfy

Vi(u) < Ki ∈ R for large u. (8a)

dVi(u)

du
≡ V ′

i (u) is positive or negative for large u (that is, the sign of V ′
i (u)

is constant at infinity) (8b)
d2Vi(u)

du2
≡ V ′′

i (u) is negative for large u. (8c)

where u stands for ‖x − xi‖.
Under these conditions (that is when equations (5) and (8) are satisfied), we shall show

that the equation

ẍ = −∇
(

N∑
i=1

Vi(‖x − xi(t)‖)
)

(9)

admits escape or scattering solutions (in open sets of phase space).
At the end of this section escape to infinity, when an infinite number of pointlike sources

are present, is briefly studied.

2.1. Escape to infinity: a finite number of central potentials

Consider the differential equation (9). Taking two derivatives with respect to t on both sides
of the equality ρ2 = x · x (ρ = √

x · x) and using equation (9) we easily get

ρ̈ � −∇V (x, t) · x
ρ

(10)

and since V is a linear superposition of central potentials Vi equation (10) becomes

ρ̈ �
(

−
N∑

i=1

x − xi (t)

‖x − xi (t)‖ · V ′
i

)
· x
ρ

= −1

ρ

(
N∑

i=1

ρ2 − x · xi(t)

‖x − xi(t)‖ · V ′
i

)
(11)

We just consider now the case V ′
i � 0 (∀i) when ρ is large (see equation (8b)), since the other

cases can be reduced to this one.
Under these conditions equation (11) becomes

ρ̈ � −
N∑

i=1

V ′
i (‖x − xi (t)‖) V ′

i > 0 ∀i for large ρ. (12)

Now taking into account equation (5) we can write (when ρ is large)

‖x − xi(t)‖ � ‖x‖ − ‖xi(t)‖ � ρ − M (13)

and since by equation (8c) V ′
i decreases for large ρ we can write

V ′
i (‖x − xi(t)‖) � V ′

i (ρ − M) (14)
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Table 1. Classical potentials.

Sign of V ′(u) Sign of V ′′(u)

V (u) K V ′(u) for large u V ′′(u) for large u

Newton − 1
u

0 1
u2 + −2

u3 −
Morse −e−(u−1)2

0 2(u − 1) e−(u−1)2
+ −2 e−(u−1)2

[2(u − 1)2 − 1] −
Lennard-Jones 1

u12 − 1
u6 0 −12

u13 + 6
u7 + −6

u8

(
7 − 26

u6

)
−

Saxon–Woods −1
1+ eu−1 0 eu−1

(1+ eu−1)2 + eu−1(1−eu−1)

(1+ eu−1)3 −
Yukawa − e−u

u
0 (1+u)e−u

u2 + − e−u(u2+2u+2)

u3 −
Eckart −e−u

1 + e−u 0 e−u

(1 + e−u)2 + −e−u(1−e−u)

(1 + e−u)3 −
Hylleraas −1

cosh2 u
0 2 sinh u

cosh3 u
+ 2(1−sinh2 u)

cosh4 u
−

Note that the positive coupling constant ki (the ‘mass’ of the attracting centre when the potential is Newtonian) has
been omitted in the column of V (u).

and equation (12) becomes

ρ̈ � −
N∑

i=1

V ′
i (ρ − M)

def= −dW(ρ)

dρ
(15)

where W(ρ) stands for

W(ρ) =
∫ (

N∑
i=1

V ′
i (ρ − M)

)
dρ =

N∑
i=1

Vi(ρ − M). (16)

Therefore when (8a) holds W(ρ) (see equation (16)) is bounded. We shall immediately see
the consequences of this on the solutions of (15).

The reader can see in table 1 how the hypotheses assumed up to now are fulfilled by
certain classical potentials.

We can see in table 1 that the Newton, Morse, Lennard-Jones, Saxon–Woods, Yukawa,
Eckart and Hylleraas potentials satisfy conditions (8a)–(8c) and therefore escape to infinity in
the presence of one, or several, of these potentials is guaranteed.

Potentials such as e−u sin u or sin u
1+u2 violate condition (8b). Escape to infinity under the

action of these potentials must be studied by other methods.
It is well known that the Newtonian potential −1

u
rules the classical motion of celestial

bodies [4]; it also rules the motion of classical charged particles under the influence of charges
of opposite sign (via a Coulomb potential). The Morse potential [6] accounts for the interaction
between nuclei in diatomic molecules, while the Lennard-Jones potential [5] was proposed
as a model for the interaction between noble gas atoms. The Yukawa [7] and Saxon-Woods
potentials [8] arise in order to model the low energy nuclear forces between protons and
neutrons in nuclei. Finally, the Eckart potential [9] is useful in the description of the motion
of electrons in a potential barrier.

Note that the results of this section hold when the potentials Vi of equation (7) are different
or equal for different values of i.

Consider now (see equation (15)) the differential inequality

ρ̈ � −dW(ρ)

dρ
W(ρ) = bounded (17)
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and the differential equation

ρ̈ = −dW(ρ)

dρ
. (18)

Now, equation (18) admits unbounded solutions (remember that W(ρ) � K,K ∈ R and
1
2 ρ̇2 + W(ρ) is a first integral of equation (18)).

On the other hand, when V ′′
i < 0 (∀i) when ρ is large (assumption (8c)) we get the

following result (see the appendix): if (ρ0, ρ̇0) are initial conditions for equation (18) and

(i) the corresponding solution ρ(t) is unbounded for t > 0,
(ii) W ′′(ρ) is negative for large ρ,

then the corresponding solution ρ̃(t) of equation

ρ̈ = a(ρ) + p(t) p(t) � 0 p(0) > 0 (19)

(where a(ρ) stands for −W ′), with the same initial conditions (ρ0, ρ̇0) as equation (18), is also
unbounded for t > 0.

It follows that since equation (18) possesses unbounded solutions for initial conditions
(ρ0, ρ̇0) lying on open sets, the same result holds for equation (17) (see the appendix for a
more detailed explanation).

2.2. Escape to infinity: an infinite number of central potentials

To conclude this section we briefly study escape to infinity when an infinite system of central
potentials is present. That is, we assume that V (x, t) is given by

V (x, t)
def=

∞∑
i=1

Vi(‖x − xi(t)‖). (20)

The force associated with V (x, t) is

F(x) = −
∞∑
i=1

(
V ′

i (‖x − xi(t)‖) x − xi(t)

‖x − xi(t)‖
)

. (21)

Uniform convergence of series (20) and (21) for large ρ is, of course, assumed. On the other
hand V (x, t) is also assumed to be bounded for large ρ:

V (x, t) � K for large ρ. (22)

All these hypotheses can be discussed when the Vi are given. For instance, when Vi(u) is the
Newtonian potential,

Vi(u) = −mi

u
(mi > 0) (23)

it can immediately be proved that the assumptions

‖xi‖ i→∞→ +∞
∞∑
i=1

mi‖xi‖−1 = finite
∞∑
i=1

mi‖xi‖−2 = finite (24)

imply the uniform (and absolute) convergence of the series appearing in equations (20) and
(21) (see [4]). Note that the first of equations (24) guarantees that the masses mi do not
accumulate around any x �= xi .

Concerning escape to infinity when there is an infinite number of attracting centres (see
equations (20) and (21)), we shall limit ourselves to show that escape is possible for some
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particular cases. The discussion of the general case (see equations (20) and (21)) is extremely
tedious and will not be given.

Case 1. One of these particular cases is that in which there exists a plane (say z = 0) such
that zi(t) < 0 (∀t > 0). Then escape to infinity is possible (in fact one can escape to infinity
by the region z > 0).

Indeed, we get from equation (21)

z̈ = −
∞∑
i=1

V ′
i (‖x − xi(t)‖) z − zi(t)

‖x − xi(t)‖ (25)

and since z > 0, zi(t) < 0 and V ′
i (u) > 0 at infinity (see the restrictions appearing in

(8a)–(8c)), we can write

z̈ � −
∞∑
i=1

V ′
i (‖x − xi(t)‖) (26)

and on account of equation (14) we get

z̈ � −
∞∑
i=1

V ′
i (ρ − M)

z-axis= −
∞∑
i=1

V ′
i (z − M)

def= −dW(z)

dz
(27)

where

W(z)
def=

∫ ∞∑
i=1

V ′
i (z − M) dz =

∞∑
i=1

Vi(z − M) (28)

(for the mathematical justification concerning the commutation of integrals and series, see [13])
and since equation (8a) holds, W(z) is bounded since V (x, t) was assumed to be bounded at
infinity (see equation (22)). Therefore escape to infinity is guaranteed.

Case 2. We now assume that there is an axis (say the z-axis) such that for every i there exists
i∗ such that xi∗(t) = (−xi(t),−yi(t), zi (t)) and Vi(‖x − xi‖) = Vi∗(‖x − xi∗‖). When these
conditions hold the z-axis is an invariant line. Escape to infinity is also possible in this case
(in fact via the z-axis). The proof is similar to that of case 1 and will not be given here.

3. Escape and perturbations

Consider that the unit-mass, unit-charge particle is subject to the action of a potential of the
form

V (ρ) + VP (x)
‖∇VP (x)‖
|V ′(ρ)| � C ∈ R for large ρ (29)

where VP stands for the perturbation of V (ρ), V (ρ) being a central potential, and V ′(ρ) =
dV (ρ)

dρ
. As usual V and VP are assumed to be analytic on their definition domains. We

also assume that V is bounded and that V ′(ρ) > 0, V ′′(ρ) < 0 for large values of ρ (see
equations (8)).

Under these hypotheses let us see that we get escape to infinity in equation

ẍ = −∇(V (ρ) + VP (x)). (30)

One application of the results of this section is the study of the effects on escape of the high-
order residual multipole perturbations of a Coulombian or Newtonian non-pointlike charge,
or mass, distribution. Note that escape occurs under the presence of just the main (isotropic)
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Table 2. Central potentials V and perturbations VP .

Bound of V

V VP
for large ρ ‖∇VP ‖

|V ′ |

− 1
ρ

∑m
i=1

Bi(ρ,θ)

ρi+1 , Bi , Bi,ρ , Bi,θ 0 ≈|B1,ρ | → bounded

bounded and periodic in θ when ρ is large
− 1

ρ
ρ cos θ , constant electric field 0 ρ2 → not bounded

when ρ is large

term in the potential (−1/ρ), when, as is well known, the total energy E of the test unit-charge,
unit-mass particle is positive.

Indeed, proceeding as in section 2 we get for large ρ

ρ̈ � − d

dρ
((1 + C)V (ρ)) (31)

and escape is guaranteed (see the appendix) since (1 + C)V (ρ) is bounded when ρ is large
(see the lines following equation (29)).

The reader can have a look at the list (table 2) of central potentials V and perturbations
VP . Note that ρ and θ are the standard polar coordinates in R2. The example in the second
row of table 2 does not satisfy condition (29), and is separately studied in section 5. Note
that the function VP in the first example of table 2 includes (as particular cases) the dipole
potential (i = 1, B1 = cos θ) and the multipole potentials when Bi = Bi(θ) [14]. Another
case of escape to infinity under perturbations is given now. Under perturbation of the potential
V (x, t) of equation (7) the total potential is V (x, t) + VP (x).

Defining Vp small when

‖∇VP ‖ � C‖∇V ‖ C ∈ R ρ = large (32)

we immediately get the following inequality,

ρ̈ � −(1 + C)‖∇V (x, t)‖ (33)

and writing V explicitly we get (see equations (7) and (8) at the beginning of section 2 and
equations (15) and (16))

ρ̈ � −(1 + C)

(
N∑

i=1

V ′
i (‖x − xi(t)‖)

)
� −(1 + C)

(
N∑

i=1

V ′
i (ρ − M)

)
def= −dW(ρ)

dρ
. (34)

Acting now with W(ρ) as in section 2 we get after straightforward manipulations that escape
to infinity is possible when equation (32) holds.

A simple example for which equation (32) holds arises when VP is a multipole potential
(going to zero at infinity as 1

ρn , n � 2) and V (ρ) is the Newtonian potential − 1
ρ

. In this

case ‖∇VP ‖ behaves (when ρ is large) like ρ−(1+n) and ‖∇V ‖ like ρ−2 and it is clear that
equation (32) holds.

4. Relativistic escape

We prove in this section that relativistic escape to infinity occurs for all the cases studied in
sections 2 and 3. Note that throughout this section we assume ε(x) = 0, ¯̄A(x) = 0.

We study in section 4.1 the case of a potential V (x, t) which is a finite superposition of
central potentials. An infinite number of central potentials are studied in sections 4.2 and 4.3.
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Relativistic perturbations are considered in section 4.4. Finally, in section 4.5 we show that
escape to infinity is possible under the action of the magnetic field created by a monopole.

The main interest of this section is to show that high energy escape to infinity can be
handled as well via the methods of the preceding sections 2 and 3.

The relativistic equation of motion is now

d

dt
(γ ẋ) = −∇V (x, t)

γ = (1 − ẋ2)−1/2

c = light speed = 1
x = (x, y, z) ∈ R3




. (35)

Writing the second-order differential system (35) in normal form, we get

ẍ = (1 − ẋ2)1/2 · ¯̄M · (−∇V (x, t)) (36)

¯̄M being the matrix defined by

¯̄M =

1 − ẋ2 −ẋẏ −ẋż

−ẋẏ 1 − ẏ2 −ẏż

−ẋż −ẏż 1 − ż2


 . (37)

Note that the entries mij of ¯̄M satisfy |mij | � 1.

4.1. Relativistic escape: a finite number of central potentials

We assume in this subsection that restriction (5) holds and that equation (36) becomes

ẍ = (1 − ẋ2)1/2 ¯̄M · (−∇V (x, t)) −∇V (x, t) = −
N∑

i=1

x − xi(t)

‖x − xi(t)‖ ·V ′
i (‖x − xi (t)‖).

(38)

We show that escape to infinity occurs. The reader will note that this is proved without
invoking energy conservation.

Taking into account that |mij | � 1 we get

x ¯̄MF(x) � 3‖x‖ · ‖F(x)‖ = 3ρ‖F(x)‖ (39)

and proceeding as in section 2 we get (recall that V ′
i > 0 for large ρ)

ρ̈ � −3
N∑

i=1

V ′
i (‖x − xi(t)‖) (40)

and since V ′′
i < 0 for large ρ (see equation (8)) equation (40) becomes

ρ̈ � −3
N∑

i=1

V ′
i (ρ − M)

def= −dW

dρ
(41)

where

W =
∫ (

N∑
i=1

V ′
i (ρ − M)

)
dρ =

N∑
i=1

Vi(ρ − M). (42)

At this point it is easy to see that when (8) holds then W(ρ) is bounded at infinity (see
section 2), and therefore escape to infinity occurs.
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4.2. Relativistic escape: an infinite number of central potentials

We now study the relativistic analogue of case 1 in section 2.2, that is, the potential V (x, t)

is now created by an infinite number of pointlike sources in motion below the z = 0 plane.
See equations (24) concerning the restrictions that the single potentials Vi(‖x − xi(t)‖) must

satisfy in order that the series
∑∞

i=1 Vi(‖x − xi(t)‖) def= V (x, t) be convergent.
Instead of equation (25) we must now write

z̈ = −(1 − ẋ2)1/2
∞∑
i=1

(−ẋż,−ẏż, 1 − ż2) · (x − xi(t), y−yi(t), z − zi(t))

‖x − xi(t)‖ · V ′
i (‖x − xi(t)‖)

(43)

and taking into account that V ′
i > 0 and V ′′

i < 0 for large ρ, and zi(t) < 0 ∀i, after easy
manipulations we get

z̈ � −
√

3
∞∑
i=1

V ′
i (z − M) = −dW(z)

dz
. (44)

Therefore W(z) is given by

W(z) =
√

3
∫ ( ∞∑

i=1

V ′
i (z − M)

)
dz =

√
3

∞∑
i=1

Vi(z − M) (45)

(for the mathematical justification concerning the commutation of integrals and series, see
[13]). Making explicit the coupling constants ki underlying the potentials of Newtonian
type Vi ,

Vi(u) = kiV (u) (46)

we get

W(z) =
√

3

( ∞∑
i=1

ki

)
V (z − M). (47)

Therefore when
∑∞

i=1 ki is finite and V (z) is bounded, W(z) will also be bounded and escape
to infinity is assured. Moreover, we can say that the z coordinate will increase without bound.

4.3. Relativistic escape: an infinite number of central potentials (continued)

Consider now case 2 studied at the end of section 2.2 of an infinite system of sources (ki, xi(t))

symmetrical with respect to the z-axis.
In this case the z-axis is an invariant set and we can therefore write (see equation (43) for

x = y = 0, ẋ = ẏ = 0)

z̈ � −(1 − ż2)3/2
∞∑
i=1

z − zi(t)

‖x − xi(t)‖ · V ′
i (‖x − xi(t)‖)

� −
∞∑
i=1

V ′
i (z − zi) � −

∞∑
i=1

V ′
i (z − M)

def= −dW(z)

dz
(48)

where

W(z) =
∫ ( ∞∑

i=1

V ′
i (z − M)

)
dz =

∞∑
i=1

Vi(z − M). (49)



6450 F G Gascon and D Peralta-Salas

Escape to infinity is ruled by the behaviour of W(z) when z is large. For example, when
Vi(u) = kiV (u) (see equation (46)) equation (49) becomes

W(z) =
( ∞∑

i=1

ki

)
V (z − M). (50)

Therefore W(z) will be bounded at infinity whenever
∑∞

i=1 ki is finite and V (z) is bounded for
large values of z. Note that by equation (8) this requirement on V (z) is automatically satisfied.

4.4. Relativistic escape: perturbations

Consider now the case of the relativistic equation

ẍ = (1 − ẋ2)1/2 ¯̄M · F(x) F = −∇(V (ρ) + VP (x)) (51)

where V (ρ) is bounded and V ′(ρ) > 0, V ′′(ρ) < 0 when ρ is large and VP (the perturbation)
satisfies

‖∇VP ‖ � C|V ′(ρ)| for large ρ. (52)

Let us show that equation (51) admits escape solutions.
Indeed, from equation (51) we get

ρ̈ � −3(1 + C)V ′(ρ)
def= −dW(ρ)

dρ

}
(53)

where

W(ρ) = 3(1 + C)V (ρ) (54)

which is bounded since V (ρ) has been assumed to be bounded when ρ is large. Therefore
equation (51) admits escape solutions.

We now study the case of the main potential V (x, t) being created by a finite collection
of point sources at xi(t), ‖xi (t)‖ � M (see equation (7)) under perturbation of the potential
VP (x).

Assuming that the perturbation VP of V satisfies an equation of type (52), that is

‖∇VP ‖ � C‖∇V ‖ C ∈ R ρ = large (55)

we get

ρ̈ � −3(1 + C)‖∇V (x, t)‖ (56)

where the expression for ∇V (x, t) appears in equation (38). Therefore (remember that V ′
i > 0

for large ρ) we can write

‖∇V (x, t)‖ �
N∑

i=1

V ′
i (‖x − xi(t)‖) (57)

and equation (56) becomes (taking into account that ‖xi(t)‖ � M and V ′′
i < 0 when ρ is

large)

ρ̈ � −3(1 + C)

N∑
i=1

V ′
i (ρ − M)

def= −dW(ρ)

dρ
(58)

where

W(ρ) = 3(1 + C)

N∑
i=1

Vi(ρ − M). (59)

Therefore, as Vi(u) are assumed to be bounded, W(ρ) is also bounded and escape to infinity
is guaranteed.
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4.5. Relativistic escape under the action of monopoles

Let us finally show that the high energy motion of an electric charge in the magnetic field
created by a monopole [15] admits escape to infinity.

Indeed, the equation of motion is

ẍ = (1 − ẋ2)1/2 ¯̄M
x ∧ ẋ
‖x‖3

x ∈ R3 (60)

and therefore equation (10) becomes

ρ̈ � x
ρ

(
(1 − ẋ2)1/2 ¯̄M

x ∧ ẋ
‖x‖3

)
ρ = ‖x‖ (61)

and, as it is not difficult to show that x ¯̄M(x ∧ ẋ) vanishes, we get

ρ̈ � 0 (62)

and escape to infinity is assured.

5. Escape under the action of a constant and uniform electric field and a central
potential

Let x ∈ R3, ε = (0, 0, ε) a constant electric field along the z-axis and V (ρ) a central potential,
ρ = ‖x‖ (classical Stark effect [16]). Sufficient conditions on V (ρ) for escape to infinity are
now given. The Newtonian differential equation is (in spherical coordinates)

ẍ = −∇V (ρ) + ε = −∇(V (ρ) + ρ cos θ) ε = (0, 0, ε). (63)

Since any plane through the z-axis is invariant under (63) we just consider the differential
equation

··�
ρ = −∇V (

�
ρ) + ε ε = (ε, 0)

�
ρ = (x, y)

�
ρ =

√
x2 + y2 (64)

induced by (63) on any of these invariant planes.
Acting as in section 2 (equation (10)) we get from (64) (in the standard polar coordinates

(
�

ρ,
�

θ) of R2)
··�
ρ � −V ′(�

ρ) + ε cos
�

θ (65)

and since the energy E is conserved we get

V (
�
ρ) − ε

�
ρ cos

�

θ � E. (66)

By eliminating cos
�

θ , equations (65) and (66) imply

··�
ρ � −V ′(�

ρ) +
V (

�
ρ) − E

�
ρ

def= −dW(
�
ρ)

d�
ρ

(67)

W(
�
ρ) being defined by

W(
�
ρ) = V (

�
ρ) −

∫
V (

�
ρ)

�
ρ

d�
ρ + E · ln(

�
ρ). (68)

It is easy to check that when V (
�
ρ) satisfies

V0 � V (
�
ρ) � V1

�
ρ large V0, V1 ∈ R (69)

then

W(
�
ρ) � V (

�
ρ) + (E − V0) ln(

�
ρ). (70)
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Therefore, choosing E < V0 we get W(
�

ρ) < A, A ∈ R (remember that by equation (69)
V (

�
ρ) � V1), and therefore escape to infinity occurs on any of the invariant planes of

equation (63).
All the potentials of section 2 (see table 1) satisfy equation (69) and therefore admit escape

when perturbed by constant electric fields.
The reader will check that escape can also be obtained when ẍ = −∇(V (ρ) + Ṽ (ρ)p(θ)),

(ρ, θ, φ) being the standard spherical coordinates in R3, under suitable assumptions on Ṽ (ρ).
Note also that equation (64) for V (

�
ρ) = −1

�
ρ

is integrable [17, 18] since a first integral, in

addition to the energy, exists [19].
Nevertheless the KAM theory of integrable systems [18] is useless in the context of our

work and cannot be applied to equation (64) (for V (
�
ρ) = −1

�
ρ

and ε a small perturbation) since

conservation of unbounded motions (under perturbations) is outside the reach of KAM theory.
To conclude this section let us mention that we have studied the escape solutions of the

equations of type

ẍ = −∇V (ρ) + ẋ ∧ B x ∈ R3 B = constant (71)

where ∧ denotes the standard vector product, with little success.
Note that for B = (0, 0, B) the z = 0 plane is invariant under equation (71). On this plane

equation (71) becomes

(ẍ, ÿ) = −∇V
(√

x2 + y2
)

+ B(ẏ,−ẋ). (72)

This last equation has the two first integrals

E = 1
2 (ẋ2 + ẏ2) + V (ρ) L = xẏ − yẋ +

B

2
(x2 + y2). (73)

Upon introducing polar coordinates and eliminating θ̇ we get

1

2ρ2

(
L − Bρ2

2

)2

+ V (ρ) � E. (74)

Equation (74) implies that ρ is bounded when V (ρ) is bounded. Therefore no scattering
solutions of equation (71) can be obtained by this method.

Another open problem concerning escape solutions appears when an additional electric
term (ε, 0, 0) is introduced in equation (71).

6. Final remarks and open problems

Escape to infinity has been detected (see sections 2, 3 and 5) in some physical systems of type

ẍ = −∇V (x, t) + ε(x) + ¯̄A(x)ẋ x ∈ Rn (n = 2, 3) x = (xi). (75)

A more difficult task is to get conditions on the e.m.f. (ε(x), B(x)) or (ε(t), B(t)) or even
(ε(x, t), B(x, t)) in order that equation (75) has unbounded solutions for t > 0.

An interesting open problem is that of showing or disproving that equation

ẍ = −∇V (x) x = (x, y) ∈ R2 (76)

where V (x, y) is bounded at infinity (V (x, y) � K when ρ is large), admits scattering
solutions, as happens for the one-dimensional equation ẍ = −V ′(x) or for central potentials
V (x, y) = V (‖(x, y)‖). We have tried getting a counterexample of a bounded V (x, y) with
every solution of equation (76) x(t; x0, ẋ0) bounded, for arbitrary (x0, ẋ0), without success.

There remains the open problem of studying relativistic escape to infinity when a central
potential (or superposition of different central potentials) and a constant electromagnetic field
(ε, B) are present. The methods developed in this paper seem to fail for this equation and
possibly a different technique is necessary to ascertain escape to infinity.
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Appendix

Let us write equations (17) and (18) in the form

ρ̈ = a(ρ) (A.1)

¨̃ρ = a(ρ̃) + p(t) p(t) � 0 p(0) > 0. (A.2)

Remember that a(ρ) (see equation (12)) is negative when ρ is large, and a(ρ) is Cw when the
potentials Vi are Cw .

Note that we have explicitly assumed in equation (A.2) that for a certain t = t0 = 0 p(0)
is positive. But this is obvious since otherwise p(t) = 0 identically and equation (A.2) would
become equation (A.1).

We now assume that

a′(ρ) = −W ′′(ρ) > 0. (A.3)

Note that W ′′(ρ) is given by (see equation (16))

W ′′(ρ) =
N∑

i=1

V ′′
i (ρ − M) (A.4)

and equation (A.3) holds on account of conditions (8a) (recall that we consider ρ large).
Remember that the potentials Vi such that V ′

i < 0 (for large ρ) have been eliminated in the
proof (see section 2).

Let us now prove that when ρ(t) satisfies equation (A.1) and

ρ(0) = ρ0 ρ̇(0) = ρ̇0 ρ(t) = unbounded for t > 0 (A.5)

then the corresponding solution ρ̃(t) of (A.2), with initial conditions

ρ̃(0) = ρ0 ˙̃ρ(0) = ρ̇0 (A.6)

is also unbounded.
Indeed, subtracting equations (A.2) and (A.1) we get

¨̃ρ(t) − ρ̈(t) = a(ρ̃(t)) − a(ρ(t)) + p(t) (A.7)

ρ(t) and ρ̃(t) being the solutions to (A.1) and (A.2) respectively with the same initial
conditions (ρ0, ρ̇0).

Fixing t = ti and applying the mean value theorem to the term a(ρ̃(t))−a(ρ(t)) of (A.7)
we get

¨̃ρ(ti) − ρ̈(ti ) = a′(i(ti))(ρ̃(ti ) − ρ(ti)) + p(ti )
def= q(ti)(ρ̃(ti) − ρ(ti)) + p(ti) (A.8)

i(ti) being a real number between ρ(ti) and ρ̃(ti ).
Note that for a generic t we can write q(t) in the form

q(t) = a(ρ̃(t)) − a(ρ(t))

ρ̃(t) − ρ(t)
(A.9)

q(t) being a C 0 function of t since

(i) a(ρ) is derivable (it is in fact analytic for large ρ if the potentials Vi(u) are analytic),
(ii) a(x)−a(y)

x−y
= a′(x) when x = y (x, y ∈ R) is continuous.

Note that by (A.3) q(t) is positive.
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Setting ρ̃(t) − ρ(t) = x(t), we can write (A.8) in the form (see (A.2))

ẍ(t) = q(t)x(t) + p(t)

x(0) = 0 ẋ(0) = 0
q(t) ∈ C0 p(t) ∈ Cw

q(t) > 0 p(0) > 0


 (A.10)

p(t) being analytic when the potentials Vi(u) are analytic.
Let us now prove that any of the C2 solutions of (A.10) [20] satisfies (note that as q(t)

is only a continuous function then the Peano theorem [20] only guarantees the existence of
solutions but not their unicity)

x(t) � 0 t > 0. (A.11)

Indeed from (A.10) we get ẍ(0) = p(0) > 0 and therefore ẍ(t) > 0, ẋ(t) > 0 and x(t) > 0
for t ∈ (0, t1], t1 > 0.

Assume that for some t2 > t1 > 0 we have x(t2) < 0; then there exists t̄ ∈ (0, t2) such
that ẋ(t̄ ) = 0 and x(t) > 0 for 0 < t < t̄ . Therefore by the mean value theorem we get

ẋ(t̄ ) − ẋ(0) = ẍ(¯̄t )t̄ ¯̄t∈(0, t̄ ) (A.12)

and therefore ẍ(¯̄t ) = 0. But this contradicts equation (A.10) and therefore x(t) > 0 ∀t > 0.
As ρ̃(t) = ρ(t) + x(t) and x(t) > 0 ∀t > 0 we obtain that ρ(t) unbounded implies ρ̃(t)

also unbounded, as we desired to prove.
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